

Smart Node® 系列 ISM 超低功耗智能无线通信模块 N618

Ultra low power wireless module N618

Version: V2.2

Date: 2019.04.10

逻迅科技,专注于提供物联网系统产品和物联网系统整体解决方案,产品包括无线模组、无线传感器、无线网 关及云计算软件。产品具有超低功耗、超长传输距离、应用便捷和低成本等优势,广泛应用于智能电网、物联 网、工业 4.0 监控、节能降耗、消防、安防、冷链监测等行业。

版权

版权 © 2015 上海逻迅信息科技有限公司(GVIM)保留所有权。

中文名字

上海逻迅信息科技有限公司

- 逻辑>>>IT技术的基本思维元素
- 迅速>>>敏捷、快速

英文名字

Global Village Intelligent Machine Technology Co.,Ltd. 地球村智能机器技术公司 简称 GVIM

逻迅企业标识*

SmartNode

智能射频通信技术*

计算机终端标识"

超低功耗智能无线通信模块

SmartNode N618

超低功耗无线通信技术,简称 SmartNode。当用户需要将产品接入互联网时,将原有设备或传感器通过标准串口接入 SmartNode 模块,用户只需完成本地串口通讯,其他联网事情都由 SmartNode 模块完成,大大提高了产品开发周期。

应用范围:

- 温度、湿度、压力监控系统
- 数字故障指示器
- 无线数据采集
- 无线火灾探测传感器
- 安防监控系统
- 远程无线抄表系统
- 电力设备温度、故障监测
- 无线遥控、工业遥控
- 智能交通无线地磁
- RFID 射频识别
- 智能家居、建筑
- 能源管理系统
- 医疗和电子仪器仪表自动化控制

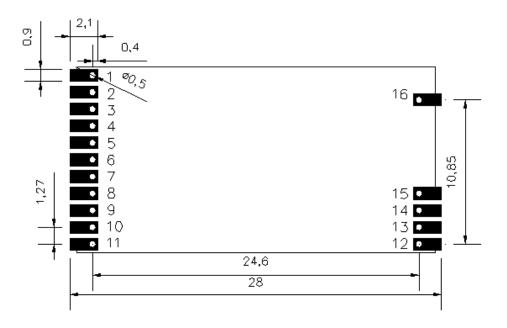
特点

- 软件无线 169Mhz-1Ghz 频率软件可调
- 发射功率可调,最大 20dbm(1W 639mA 3.3V)
- 工作电压 1.9V-3.6V
- DSSS 扩频调制, 抗干扰、抗多径
- 软件跳频
- 10uA 级的超低功耗工作电流
- 多种工作模式和应用方式可参数设置
- 支持同步、异步通信方式
- 10uS 级的同步精度

1. 系统概述(System Overview)

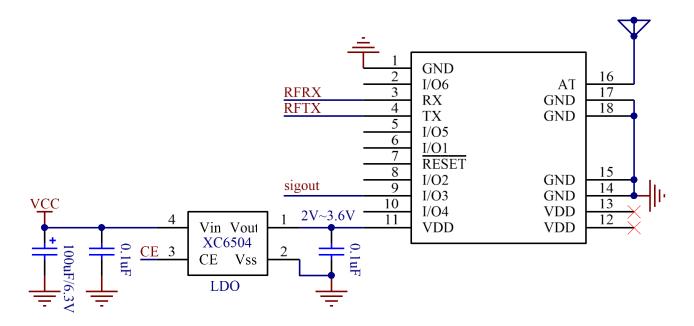
1.1 简介(Introduction)

2. 引脚及封装 Pin


2.1 引脚定义(Pin Definitions)

$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ \hline 5 \\ \hline 6 \end{array} $	GND I/O6 RX TX I/O5	AT GND GND	16 17 18
7 8 9 10 11	I/O1 RESET I/O2 I/O3 I/O4 VDD	GND GND VDD VDD	15 14 13 12

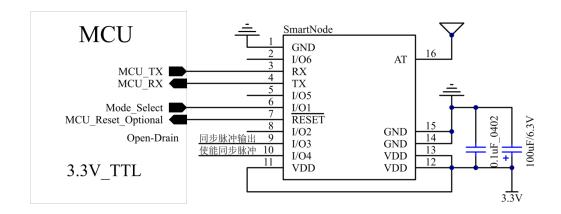
1/14/15/17/18	GND	电源地		
2	106	模块休眠与工作的状态指示,休眠为高,工作为低,可外扩看门狗监测模块活度		
3	RX	模块 UART 接收(TTL 电平)内部上拉		
4	TX	模块 UART 发送 (TTL 电平) 推挽输出		
5	I05	I/0 (支持扩展)		
	I01	数据传输模式选择		
6		1、 高电平协议模式		
		2、 低电平透传模式		
7	RESET	模块复位 (低电平有效)		
8	I02	无线信号指示,无线工作时输出高电平脉冲		
9	103	输出(同步脉冲输出,负脉冲 300uS)		
10	I04	输出 (数据到达信号, 负脉冲 500uS)		
11/12/13	VDD	电源输入 (1.9V-3.6V)		
16	Antenna	天线接口, IPEX1.13 接口 或 板与板链接		



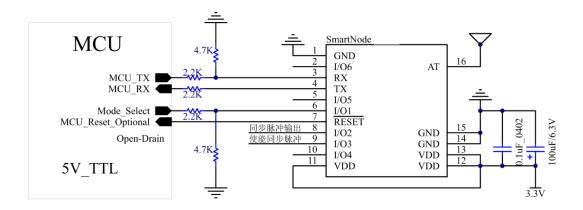
2.2 封装尺寸(Pin Definitions)

3. 接口电路参考设计 Reference circuit

3.1 电源设计 Power circuit



3.2 复位


内部电阻上拉,可以悬空,如接外部复位控制信号,使用开漏输入,不再需电阻上拉。

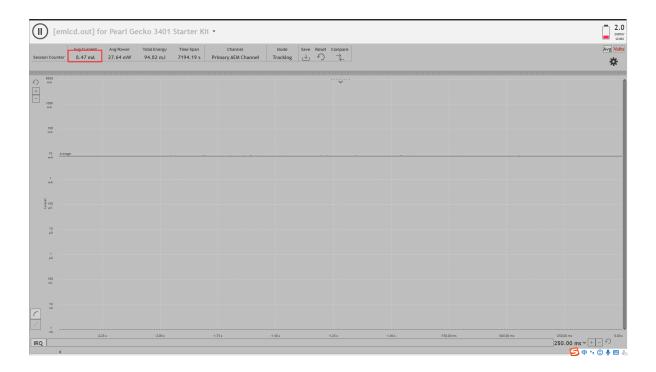
3.3 典型应用图

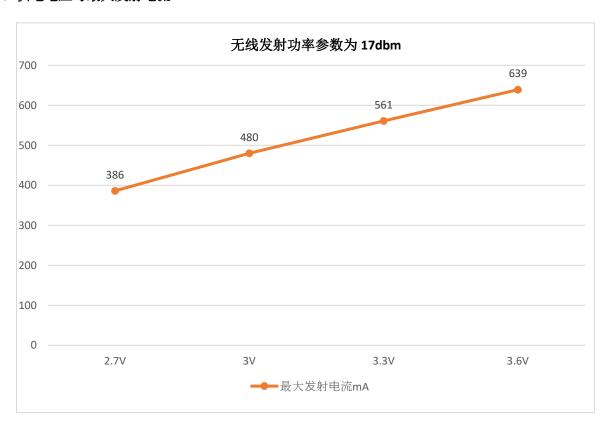
示例 1: 电平匹配

示例 2: 电平不匹配

4. 参数规格 Parameter

型号 Type	SmartNode N618				
电气参数 Electrical paramet	ers (25°C 3.3V)				
发射功率	1dbm \sim 20dbm(可调 adjustable)				
TX Power	Tubin ^{r ©} Zoubin(中) 顷 adjustable)				
发射电流	289mA+3dbm); 639mA(+17dbm)				
TX Current	283111A1348111), 633111A(11748111)				
接收电流	6.5mA(数据到达瞬时接收状态 Only during the receiving data)				
RX Current	0.5mm (数加到起源和)及依状态 Only during the receiving data /				
侦听电流	8.47uA(32kbps 下,长期侦听信号 ,与无线波特率有关)				
WOR Current	(Listen for signal during)				
深度休眠电流	1uA (唤醒时间 120us,只有串口待机工作)				
Sleep Current	(Wake up of time, Only a UART work)				
供电电压	1.9V∼3.6V				
Supply voltage	1.57 5.67				
射频特性 RF parameters					
频 率	ISM 频段(169Mhz-1Ghz,常用 315Mhz 433Mhz 470~510Mhz 868Mhz 915				
frequency	MHZ,不同频段需调整模块匹配电路,用户软件不需改变)				
信 道	138 信诸				
number of channel	128 信道				
	DSSS 扩频,跳频与固定频率(软件配置 adjustable)				
工作模式	DSSS spread spectrum,				
Working mode	Frequency hopping,				
	Frequency fixed,				
调制方式	GFSK、DSSS				
modulation					
无线传输速率	2.4 Kbps~256 Kbps(软件配置 adjustable)				
Wireless data rate	2.4 Kbps 250 Kbps (秋日 Ru <u>B.</u> dujustabile)				
	-124dbm@2 kcps;				
接收灵敏度	-120dbm@10kcps;				
Sensitivity	-116dbm@50kcps;				
	-113dbm@100kcps				
 通信距离 (空旷)	External antenna 3dbi, RF data rate 10kcps				
Range (Outdoor)	1500m @ 14dbm				
	3000m @ 20dbm				
模块 ID	4Byte, Hexadecimal show				
Device ID	12,10,110.0000				
厂家识别码	2Byte, Hexadecimal show				
PID	ZDYLE, FIEXAUECIIIIAI SIIUW				
用户识别码	2Byte, Hexadecimal show				


UID				
加密	AES128			
Encryption	AE5128			
纠错	FFC			
Error correction	FEC			
通讯接口	WART BILL			
Communication interface	UART 串口			
	2400, 4800, 9600, 19200, 38400, 57600, 115200	bit/s		
串口速率(Kbit/s)	(Adjustable, Default 9600 bit/s)			
Uart data rate	(可软件配置,默认 9600 bit/s)			
通讯协议				
Communication protocol	SmartNode V6			
网络结构	星形网,树型网,点对点,网状网			
The network structure	Star, Tree, Point to point, mesh			
网络深度	Q housing			
Number of repeater	8 hopping			
数据传输模式	协议传输(Transmission protocol)			
Data transfer mode	透明传输(Transparent transmission)			
天线接口方式	1957年247年24年25年25年25年27年27年2			
Antenna interface	IPEX 板端(通过馈线连各种 RF 连接器或天线)			
其他参数 other				
工作温度	40% - 105%			
Operating temperature	-40℃~+85℃			
天线口防护等级	IEC61000-4-2 (ESD) ±20kV (air), ±12kV (contact)			
Protection solution to meet	IEC61000-4-4 (EFT) 40A (5/50ns)			
机械尺寸	27			
Package size	27mm×14mm×2.7mm			


5. 电气参数 Electrical Specifications

5.1 极限参数

5.2 休眠电流 (8.47uA)

5.3 供电电压与最大发射电流

5.4 发射功率与发射电流的对照关系(测试电压 Test voltage 3.3V)

6. 通讯协议 Communication protocol

6.1 功能描述

SmartNode 模块是通过一系列的协议指使其工作的,其中协议有串口部分、无线部分;串口是最基本的信息输入输出端,可以通过相关协议配置参数、测试信号链路、进行无线数据传输;

6.2 串口数据包格式定义

起始符 (STX)	数据包长度(LEN)	指令(CMD)	数据体(payload)	校验(CRC or SUM)		
2byte	1byte	1byte	0 - 251byte	2byte		
	数据包检验区 Data package check area					
	数据包长度区域(Data package length area)					

注 (note):

- a) 校验从数据长度字段开始,校验到整个数据体;
- b) 数据长度(LEN)是指数据长度字开始到CRC校验结束为止的长度,包含自己;
- c) 当模块处于低功耗模式,有休眠状态存在,且串口速率大于 19200bps 时,数据帧前多加 3 个同步数据用于可靠唤醒(即 0x55 0x55 0x55)主要延迟一段时间等待 MCU 启动。

6.3 串口数据流向定义

串口数据流向	起始符 (STX)
向模块输入数据、下行(DL)	0x55+0x7A
模块输出数据、上行(UL)	0xAA+0x75

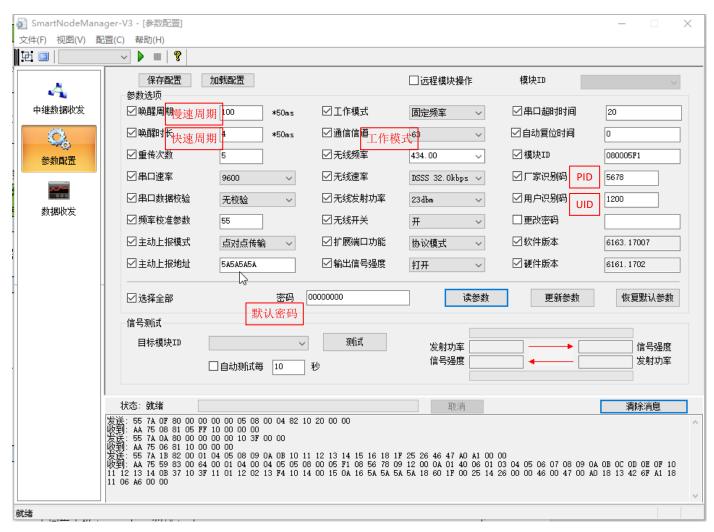
注 (note):

a) 通过起始符定义数据流向,系统可以分辨数据流向,防止数据串扰及便于数据解析;

6.4 指令字节构成

指令类型分为 3 大类:数据通信指令(3)、参数配置指令(4)、握手交互指令(5),指令字 1Byte 组成框架

1 字节(1Byte)						
bit7	bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0					
指令类型 0 无/1 有后续包 模式 0 发起/1 W				0 发起/1 响应		



6.5 指令功能表 Command and function form

							位定义 Bit	default	
						bit7:5	bit4	bit3:1	bit0
						指令 类型	0 无/1 有 后续包	模式	0 发起 1 响应
类 Class	命令类型 Command Type	功能 Function	请求 REQ 应答 RES	数值 value (HEX)	数值 value (DEC)	数值 value (BIN)			
		常规数据发送	REQ	60	96		0	0	0
		接收到数据	REQ	62	98		0	1	0
数据收发	3	全速数据发送	REQ	64	100	3	0	2	0
Data	3	快速数据发送	REQ	66	102	3	0	3	0
		慢速数据发送	REQ	68	104		0	4	0
		保留	REQ	6A	106		0	5	0
		写本地参数	REQ	80	128		0	0	0
		应答	RES	81	129		0	0	1
		读本地参数	REQ	82	130		0	1	0
参数读写 4	应答	RES	83	131	4	0	1	1	
Parameter	4	写远程参数	REQ	84	132	4	0	2	0
		应答	RES	85	133		0	2	1
		读远程参数	REQ	86	134		0	3	0
		应答	RES	87	135		0	3	1
握手交互		应答	REQ	A1	161		0	0	1
進十文旦 Interaction	5	同步	REQ	A2	162	5	0	1	0
		交互	REQ	A4	164		0	2	0

7. 模块参数配置

(由于针对此产品的配置工具还在开发,目前使用这个软件更改,名称不同指令格式一样)

只需关注红色字体圈注部分;

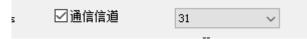
8. 模块工作模式及原理

8.1 功能描述

SmartNode 模块有休眠、异步和同步三种工作模式,根据应用设计的需求选择合适的工作模式,在理解其工作机制的前提下,三种模式可以混合使用,以达到更优的系统性能。

工作模式是通过参数设置命令选择的,由以下参数完成:

参数标识:


参数标识	功能	保存于 Flash
0x03	开机后模式: 设置模块开机后进入的默认工作模式,	是Y
OAGO	不影响模块当前的工作模式,重启后生效	<i>,</i> C 1
	当前模式:	
0X10	设置模块当前的工作模式,	否 N
	实时转换模块工作状态	

参数值及功能:

类	工作模式	参数	功能(时间片 time slot 50mS)	
class	work mode	parameter	function	
休眠模式	休眠模式	31	模块休眠 (如果设置开机模式为此参数,模块开机初始化完后即进 入休眠模式,此时串口可以随时发指令给模块切换模式)	
	异步全速	0	无休眠,全速工作,打开全部时间片接收数据,响应迅速	
	异步快速	1	以快速周期定义的时间窗,周期性的侦听数据	
	异步慢速	2	以慢速周期定义的时间窗,周期性的侦听数据	
异步模式			note:以上模式的选择以及侦听时间窗的设置, 是在功耗与实时性之间的权衡, 应根据应用需求设定合适的参数	
	异步只发		数据发送完后,模块立即进入休眠,不侦听	
	异步发并等应答 17		数据发送完后,模块等待一个应答包, 并确认无其它工作任务后进入休眠	
	同步从机 (从随主值)	32	同步模式下,从机设置为此值,将自动跟随主机的同步周期, 只有同步窗口到达,才会接收到主机的数据	
同步模式	同步主机 1s-30S	32+X 最多 62	同步模式下,主机的同步周期,范围 1-30s, 主机同步周期发生变化后,从机自动追随, 例如 33=1s,37=5s,62=30s 同步一次	
	同步从机 快速模式	63	从机追随主机的同步周期,并且能以快速周期定义的时间窗接收数据(例如:快速周期为4=200ms,从机可以在此时间延时后收到数据,而不需要等待同步窗口到达才收数据,提高数据接收的实时性,牺牲一定的功耗)快速周期需被同步周期整除,否则功耗会有不必要的增加	

设置:

(由于针对此产品的配置工具还在开发,目前使用这个软件更改,名称不同指令格式一样)

8.2 异步模式

8.3 同步模式

模块分组:

通过 PID(2Byte 厂家识别码)、UID(2Byte 用户识别码)可以将模块分组,只有这 PID 和 UID 相同的情况下,模块才可以互通;为保证不同厂家产品的独立性、互不干扰,其中 PID 由模块厂家内部分配,用户不可更改;UID 由用户自己根据产品体系定义分配,UID 中含有识别信息和信道编码信息,因此不同的 UID 可使产品工作在不同的组中。

设置:

☑厂家识别码	5678
☑用户识别码	1200

同步逻辑:

为了便于理解,并以比较形象的方式阐述工作机制,以下系统工作条件设为: 同步周期 5S,快速周期 4*50ms=200ms,慢速周期 100*50ms=5S。

当一个模块配置为同步主机模式时(工作模式参数 32+x、1-30S),会周期性的同步同组下的其他从机模块,主机 I03 在同步信号发出后,会输出一个 500uS 左右的负脉冲;模块位置为同步从机(工作参数 32)会自动追随主机的同步信号,当收到同步信号时,I03 口会输出一个 300uS 左右的负脉冲,在同一组内所有从机的同步脉冲相对误差在±5uS 内,这里以高到低的电平跳变作为基准,恢复高电平的时间因模块工作的状态浮动。这里要注意的是同组内的从机是保证相对同步的,主机 I03 输出的负脉冲只代表同步信号被发出,它与其它从机的脉冲输出时间可能会有误差,但在 100uS 内。

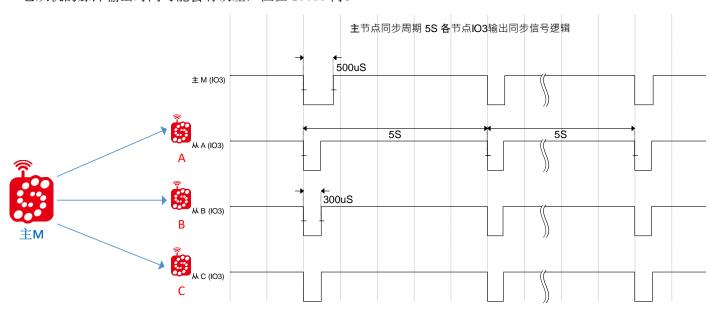
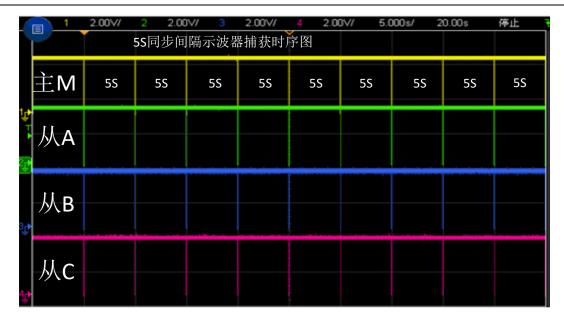
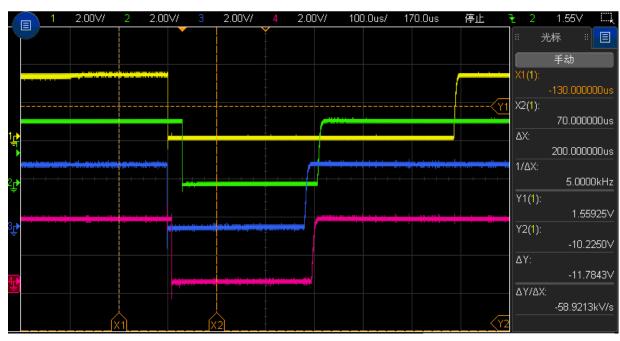
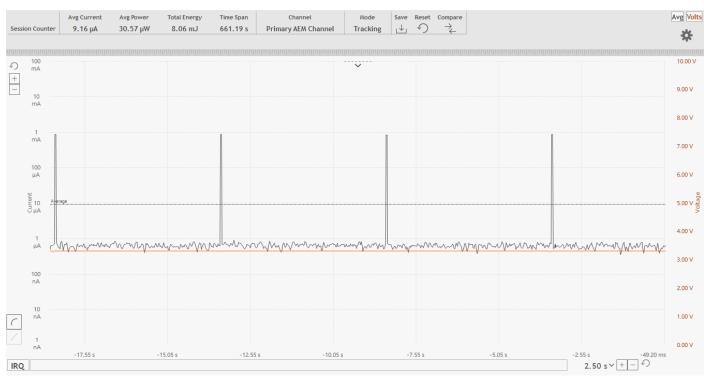
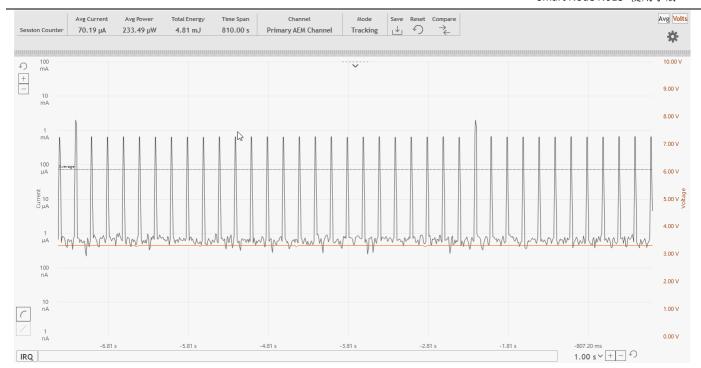




图 同步脉冲逻辑及脉宽

5S 同步周期, IO3 时序图

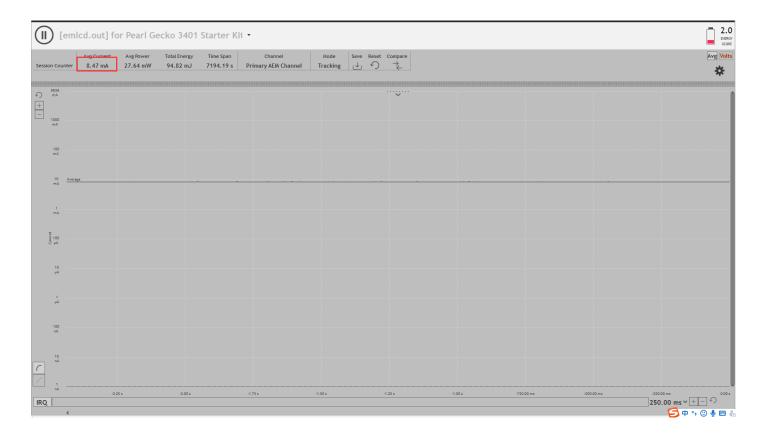


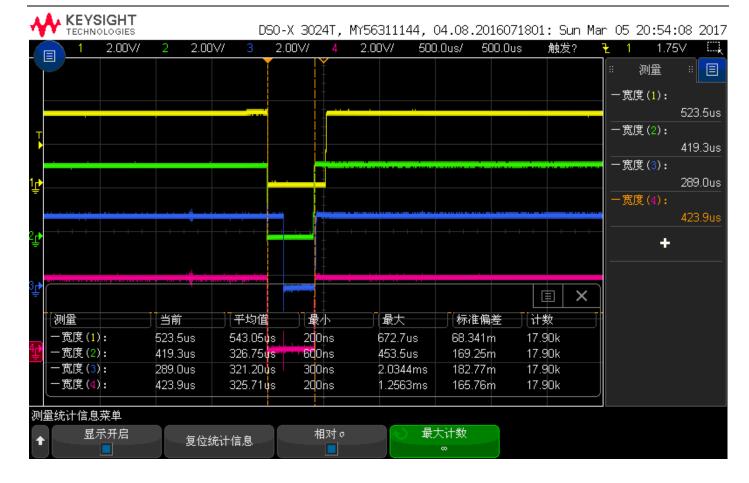
I03 同步信号负脉冲宽度



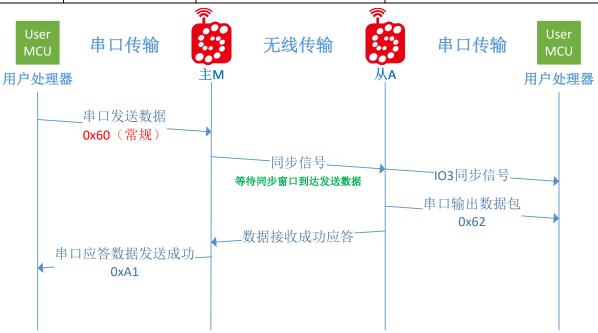
I03 同步脉冲, 典型的相对误差

从机同步模式(参数 32) 5s 周期,电流工作峰值波形,平均电流 9.16uA




从机同步快速模式(参数 63) 200ms 快速周期,电流工作峰值波形,平均电流 70.19uA

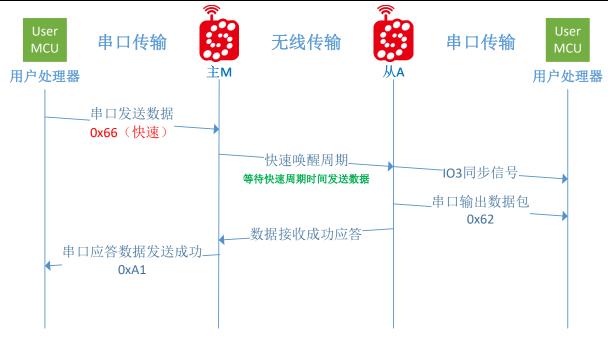
睡眠模式平均电流 8.47uA



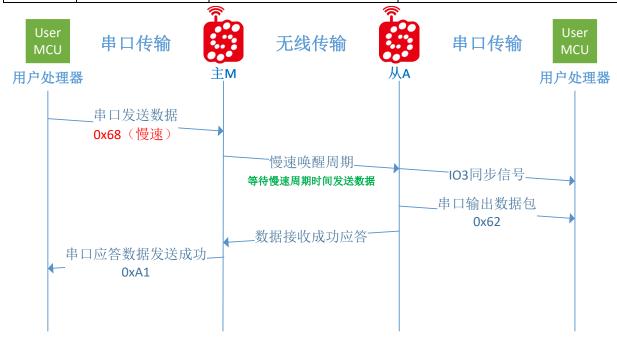
稳定性测试(同步17900次,无丢包)

8.3.1 同步模式下主机常规数据发送时序(指令 0x60):

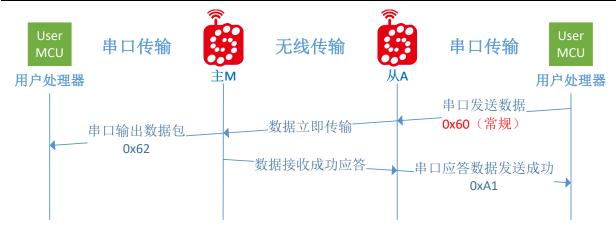
主机 通信指令	从机适用模式参数	数据接收最大延迟	功耗等级
0x60	32 同步从机 63 同步从机快速模式	同步周期窗口, 最大 5S+数据包传输	数据被提交至模块后,等到同步 窗口到达后才发送,功耗优,数据 延迟长



8.3.2 同步模式主机快速数据发送时序(指令 0x66):


主机 通信指令	从机适用模式参数	数据接收最大延迟	功耗等级
0x66	63 同步从机快速模式	快速周期周期窗口, 恒定 200mS+数据包传输	数据被提交至模块后,等一个快 速窗口时间才发送,功耗略优,数 据延迟中

8.3.3 同步模式主机慢速数据发送时序(指令 0x68):


主机 通信指令	从机适用模式参数	数据接收最大延迟	功耗等级
0x68	32 同步从机 63 同步从机快速模式	同步周期窗口, 恒定 5S+数据包传输	数据被提交至模块后,等到一个 慢速周期后才发送,功耗优,数据 延迟长

8.3.4 同步模式从机数据发送时序(指令 0x60):

从机 通信指令	主机适用模式参数	数据接收最大延迟	功耗等级
0x60	0 (32+1)至(32+30)	数据无延迟,立即被传输	数据被提交至模块后,立即发 送,功耗优,数据延迟优

8.3.5 指令及工作原理解释:

使用 0x60(常规)指令发送数据时,是由模块根据自身工作模式来判断以什么样的方式与从机通信;当为同步 主机时,由于目标从机可能处于间歇性的休眠唤醒状态,因此就以同步周期时间窗通信;当为同步从机时,由于目 标主机不休眠,所以数据被立即传输;

使用 0x66(快速)指令发送数据时,模块根据快速时间窗延迟一个周期发送数据,从机模块可以在 4*50ms=200ms 后收到数据,从机此时响应数据较快,工作电流大概 70uA;从机使用这个指令也可以上传数据,但由于主机是不休眠的,所以无实际使用意义。(此指令适合故障指示器取到电时工作)

使用 0x68(慢速)指令发送数据时,模块根据慢速时间窗延迟一个周期发送数据,从机模块可以在 100*50ms=5s 后收到数据,从机此时响应数据较慢,受同步时间窗到达的时刻点影响,但工作电流较小只有 10uA;从机使用这个指令也可以上传数据,但由于主机是不休眠的,所以无实际使用意义。(此指令适合故障指示器未取到电时工作)

8.3.6 数据发送与接收协议格式:

功能:发送数据

目标 ID: 0x12345678

数据: 0x11 0x22 0x33 0x44 0x55

数据实例:

55 7A 0D 60 12 34 56 78 11 22 33 44 55 21 87

名称	长度 (B)	数 据	描 述
起始符 (STX)	2	0x55 0x7A	下行起始符
包长	1	OxXX	包含本字节一直到 CRC 结束
指令	1	0x60	数据发送指令 0x60 0x64 0x66 0x68
设备 ID	4	0x12 0x34 0x56 0x78	4 字节 ID 高字节在前
数据区	5	0x11 0x22 0x33 0x44 0x55	数据体最大 247 字节
CRC-16 校验	2	0x21 0x87	低字节在前

功能:应答

指示与无线传输相关的工作状态

数据实例:

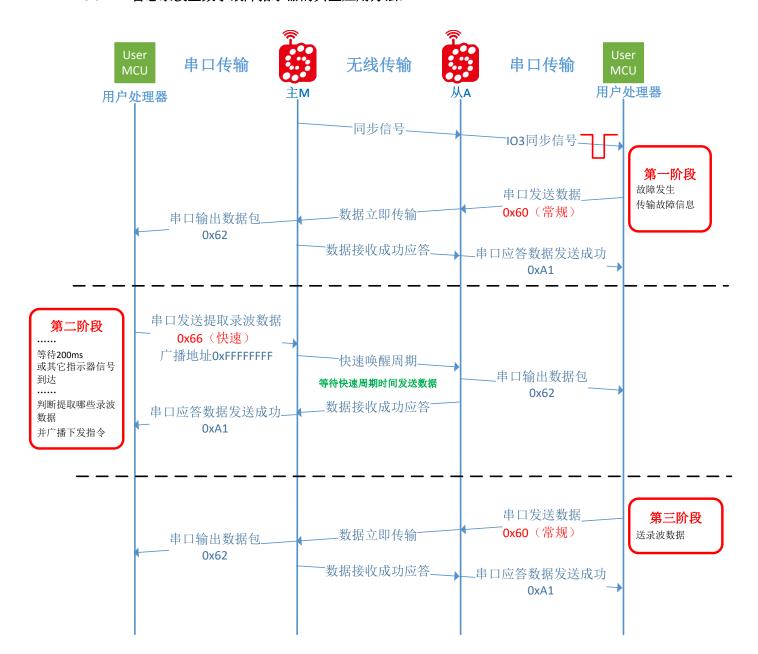
AA 75 05 A1 00 18 51

名 称	长度 (B)	数 据	描 述
起始符 (STX)	2	OxAA Ox75	上行起始符
包长	1	OxXX	包含本字节一直到 CRC 结束
指令	1	0xA1	数据发送执行完成后应答
状态	4	0x00	0x00 成功 0x00+x 重发几次成功 0xFE 广播发送完成 0xFF 发送失败
CRC-16 校验	2	0x18 0x51	低字节在前

功能:接收数据

数据源 ID: 0x08000462

数据: 0x11 0x22 0x33 0x44 0x55


数据实例:

AA 75 0D 62 08 00 03 62 11 22 33 44 55 36 F5

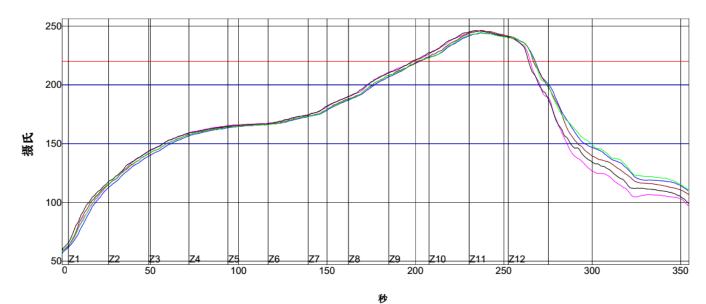
名称	长度 (B)	数 据	描 述
起始符 (STX)	2	0xAA 0x75	上行起始符
包长	1	0xXX	包含本字节一直到 CRC 结束
指令	1	0x62	收到数据指令
设备 ID	4	0x08 0x00 0x03 0x62	4 字节数据源 ID 高字节在前
数据区	5	0x11 0x22 0x33 0x44 0x55	数据体最大 247 字节
CRC-16 校验	2	0x36 0xF5	低字节在前

8.3.7 暂态录波型数字故障指示器的典型应用方法:

9. 电气特性

1. 静电防护

在模块应用中,由于人体静电,微电子间带电摩擦等产生的静电,通过各种途径放电给模块,可能会给模块造成一定的损坏,所以 ESD 保护必须重视。不管在研发、生产组装、测试等过程中,尤其在产品设计中,都应采取防 ESD 保护措施。如电路设计在接口处或者易受 ESD 的地方增加 ESD 保护,生产中佩戴防静电手套等。由于模块内部没有专门针对静电放电的保护,因此在生产、装配和操作模块时必须注意静电防护。


2. 生产

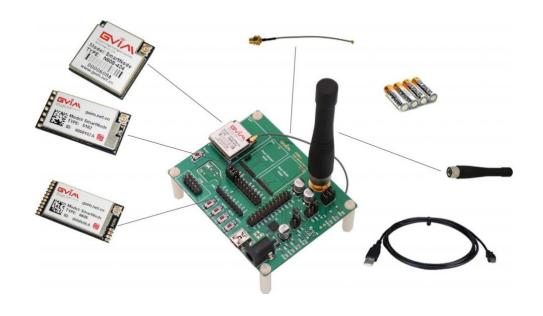
2.1 N616 顶视图和底视图

2.2 推荐焊接炉温曲线图

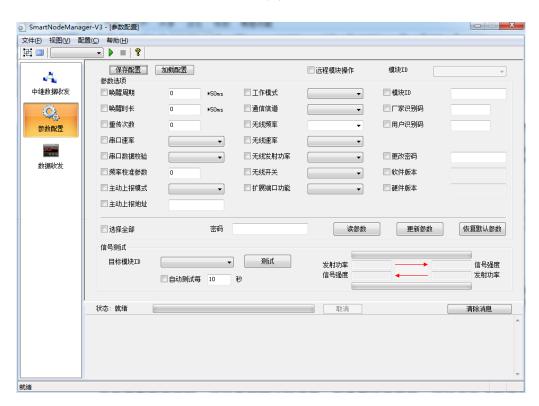
Setpoints (摄氏) 温区 1 2 3 4 5 6 7 8 9 10 11 12 上温区 80.0 140.0 160.0 170.0 170.0 180.0 200.0 225.0 245.0 265.0 240.0 下温区 80.0 140.0 160.0 170.0 170.0 180.0 200.0 225.0 245.0 265.0 240.0 Conveyor Speed (公分/分): 85.00

PWI= 86%	最高上	升斜率	最高下	降斜率	恒温时间1	50至200C	回流时间	可 /220C	最高	温度
P8	2.4	81%	-3.5	-77%	115.5	77%	65.9	80%	246.0	10%
U4	2.3	78%	-2.9	-44%	115.2	76%	65.1	75%	244.3	-7%
U1	2.4	82%	-3.4	-68%	115.7	79%	66.1	80%	246.2	12%
C7	2.5	82%	-3.1	-55%	116.8	84%	65.1	75%	246.3	13%
U4	2.4	80%	-3.0	-49%	115.9	80%	67.2	86%	244.7	-3%
温差	0.1		0.7		1.6		2.1		2.1	

制程界限:


锡膏:	RC-805 SAC3	05			
	统计数名称 最高温度上升斜率 (目标=0.0) (计算斜率的时间距离=20秒)		最低界限 0.0	最高界限 3.0	单位 度/秒
	最高温度下降斜率 (计算斜率的时间距离=20秒)		-4.0	0.0	度/秒
	恒温时间150-200C		80	120	砂
	回流以上时间 - 220C 最高温度	235	30 255	70 度 提	秒 長氏

3. 包装和温度


N616 模块符合湿敏等级,在温度<30℃和相对湿度<60%的环境条件下,干燥包装根据 IPC/JEDEC 标准执行 J-STD-020C 规范。在温度<40℃和相对湿度<90%的环境条件下,在未拆封的情况下保质期至少 个月。

4. 开发套件

评估板

SmartNodeManager 调试软件

5. 技术支持及说明

上海逻迅信息科技有限公司 免费热线: 400-8089-321

电话: 86-021-58997895

86-021-58997896 86-021-52726083

86-021-51901586

传真: 86-021-60919295

地 址: 中国 上海 徐汇区 桂平路 418 号 804 室 漕河泾国际孵化中心

邮 编: 200233

网址: http://www.gvim.cn

© 2015 一切版权归上海逻迅信息科技有限公司所有

